Introduction to PLC Programming and Implementation (2)


After the control task has been defined, the planning of its solution can begin. This procedure commonly involves determining a control strategy, the sequence of steps that must occur within the program to produce the desired output control. This part of the program development is known as the development of an algorithm. The term algorithm may be new or strange to some readers, but it need not be.

Each of us follows algorithms to accomplish certain tasks in our daily lives. The procedure that a person follows to go from home to either school or work is an algorithm—the person exits the house, gets into the car, starts the engine, and so on. In the last of a finite number of steps, he or she reaches the destination.
The PLC strategy implementation for a control task closely follows the development of an algorithm. The user must implement the control from a given set of basic instructions and produce the solution in a finite number of steps. If developing an algorithm to solve the problem becomes difficult, he or she may need to return to the control task definition to redefine the problem. For example, we cannot explain how to get from where we are to Bullfrog County, Nevada unless we know both where we are and where Bullfrog County is. As part of the problem definition, we need to know if a particular method of transportation is required. If there is a time constraint, we need to know that too. We cannot develop a control strategy until we have all of this problem definition information.
The fundamental rule for defining the program strategy is think first, program later. Consider alternative approaches to solving the problem and allow time to polish the solution algorithm before trying to program the control function. Adopting this philosophy will shorten programming time, reduce debugging time, accelerate start-up, and focus attention where it is needed—on design when designing and on programming when programming.
Strategy formulation challenges the system designer, regardless of whether it is a new application or the modernization of an existing process. In either case, the designer must review the sequence of events and optimize control through the addition or deletion of steps. This requires a knowledge of the PLC-controlled field devices, as well as input and output considerations.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: